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ABSTRACT

CLASSIFICATION OF DISTINCT MAXIMAL FLAG CODES OF A
PRESCRIPED TYPE AND RELATED RESULTS

Karakaş, Zeynelabidin

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

August 2023, 57 pages

In this thesis, we aim to improve the current bounds for a certain type of code and not
only find the number of distinct codes but also characterize them for some parameters.

Flag codes have applications in network coding and their algebraic and combinatorial
structures have been an active research area in recent years, see, for example, [4, 23].
Characterization of maximal flag codes of a given type and distance over a given
ambient space is a very difficult problem. In this work, we completely solve this
problem for small parameters with the help of MAGMA [8]. In particular, we find
new maximal flag codes as well. For a given type and distance of a flag code, the
number of distinct flag codes are determined exactly for some parameters, and we
give bounds for arbitrary ones. The concept of set flag codes are given nicely and it
is shown that some of the bounds of [23] are not tight for all q.

Keywords: Graph Theory, Coding Theory, Flag Codes, Permanents
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ÖZ

BELİRLİ BİR TİPTEKİ FARKLI MAKSİMAL BAYRAK KODLARININ
SINIFLANDIRILMASI VE İLGİLİ SONUÇLAR

Karakaş, Zeynelabidin

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ağustos 2023, 57 sayfa

Bu tezde, bayrak kodları için literatürde mevcut olan bazı sınırları geliştirmek ve
belirli tipteki farklı kodların sayılarını vermekle birlikte bazı parametreler için onları
karakterize etmeyi amaçlıyoruz.

Bayrak kodlarının ağ kodlamada önemli uygulamaları mevcuttur, ve onların cebir-
sel ve kombinatorik yapıları son yıllarda aktif bir araştırma alanıdır [4, 23]. Verilen
ambiyant uzay üzerinde belirli bir tipe ve uzaklığa sahip maksimal bayrak kodların
karakterizasyonu çok zor bir problemdir. Bu tezde, biz bu problemi küçük paramet-
reler için MAGMA [8] kullanarak tamamen çözdük ve diğer tüm parametreler için
çizge teorisindeki bazı yapılar üzerinden kombinatorik sonuçları da kullanarak birer
alt sınır ve üst sınır belirledik. Verilen bir tipteki ve istenen bir uzaklığa sahip bayrak
kodlarının sayısı için tam sonuçları bazı parametreler için belirledik, diğer değerler
için de alt ve üst sınır verdik. Küme-bayrak-kodlarını tanımladık ve bu sayede [23]’da
verilmiş olan bazı sınırların her q değeri için geçerli olmadığını gösterdik.

Anahtar Kelimeler: Çizge Teorisi, Kodlama Teorisi, Bayrak Kodları
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CHAPTER 1

INTRODUCTION

Graphs are mathematical structures that can be used to model some theoretical prob-

lems. Euler introduced graph theory as a new branch in 1736 [13], and around a

hundred years later Kirchoff made a significant contribution for electrical networks’

analysis. It was Poincaré who gave the definition of incidence matrix very first time

[26]. Since then there have been many works for the graph theory and its relation

for other areas such as engineering, architecture, management and control and so on,

some of the leading books for those relations are [6, 7, 15]. One of the most important

areas is, non-surprisingly, communication.

Communication and data-transferring systems are greatly important in today’s life.

Reliable and fast communication is essential for all sorts of companies and individuals

as well. Classical Coding and Information Theory works on a transmission from a

sender S to an intended receiver R.

S −→ R

Coding theory was born in the 1940s to solve the concern of the security of send-

ing information via a noisy channel. Claude Shannon presented a way to calculate

the maximum rate of data transmission with zero error happening in a channel with

specific bandwidth and noise characteristics [28]. Following him, Richard Hamming

studied error-correcting codes with information transmission rates more efficiently

than simple repetition. He produced a code that four data bits followed by three bits

for the check that admits not only the detection but also the correction of a single

error. The fundamental of coding theory was given in [17].
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Definition 1. Let A be a set with a finitely many elements. A code C over A of length

n is a subset of An.

In order to combat possible errors and/or erasures through the channel, the most com-

mon tool is the usage of linear block codes. Fix a finite field F (Mostly it is charac-

teristic 2, as F = F2) and take a subspace U of Kn. Here U is considered as a code,

and the elements u ∈ U are being sent through the channel. If any change of entry of

u occurs in the channel, then the receiver gets u′ and the error can be characterized as

dH := |{1 ≤ i ≤ n : ui ̸= u′i}|.

This is the Hamming distance of u and u′. The bigger hamming distance they have,

the more errors can be corrected by the nearest neighbor decoding algorithm. In fact,

the error correcting capacity of the system is equal to ⌊min dH
2

⌋ since we could have at

most one u ∈ U with dh(u, u′) = ⌊min dH
2

⌋ and dH satisfies the triangle inequality.

Because of the wide usage of the internet, the security of data transmission over a

network is more and more important. A very natural question here could be how

to execute the transfer of any data to more than one receiver, e.g. downloading or

streaming anything. The most prominent answer to this question is to use Network

Coding.

Network Coding was first introduced by [2] to attain a maximum information flow

within a network. In [2], it has been shown that the usage of coding at the network

nodes can be more useful than just routing the received inputs. After that, [22] pro-

vided an algebraic approach to coding for random network coding. They defined the

subspace channel, given by Pq(n), as a discrete memoryless channel within the al-

phabets used to represent input and output. Subspace codes would be used to correct

possible erasures or errors during the transmission. The usage of subspace codes was

introduced by [22] as a sufficient communication channel in network coding from the

sender node to the receiver node. This was the very first introduction of subspace

codes to be used in communication [20].

In the concept of flag codes, first proposed by [24], the dimension of the transmitted

subspace is fixed at each time, and it should contain the subspace(s) that is sent in
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previous time(s). In this way, the capacity for error correction improves. In [4],

authors stated that when n is even and that if each transmission has the possible

maximum distance, so does the flag, they call it optimum distance flag code. Their

biggest motivation is some features of spreads as constant dimension codes, and they

focused on the flag codes, which can be constructed from some spread. Also, they

proved that having a planar spread at the kth shot as a constant dimension code directs

us to the best possible size for the optimum distance full flag codes when n = 2k.

Recently [4, 23] considered algebraic and combinatorial structures of flag codes. Let

Fq be a finite field. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ n − 1 be an integer. Put

T = (t1, . . . , ts). By a flag of type-T in Fnq over Fq, we mean a chain of Fq-linear

subspaces

V1 ⊂ V2 ⊂ . . . ⊂ Vs ⊂ Fnq

such that

dimFq(V1) = t1, dimFq(V2) = t2, . . . , dimFq(Vs) = ts.

There is a natural distance, which is the flag distance, between two flags of type-T ,

in Fnq over Fq (see Chapter 2 below), which generalizes the subspace distance (see

Remark 1 below).

For some given integer d, it may be impossible to construct any flag code of type-T

in Fnq over Fq with minimum flag distance d. We say d is admissible if there exists

such a flag code (see Definition 6 below).

A fundamental problem is to determine the number of all maximal flag codes of type-

T in Fnq over Fq with an admissible minimum flag distance d. This is a very difficult

problem along with some interesting recent results, for example, [24, 4, 23].

A more difficult fundamental problem is to characterize all such flag codes with max-

imal cardinality. In this thesis, we solve this problem completely for small parameters

and give bounds for general cases. Namely, our exact results for this problem include

the following cases:

• Fq = F2, n = 3, T = (1, 2), d = 4,

• Fq = F3, n = 3, T = (1, 2), d = 4,
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• Fq = F5, n = 3, T = (1, 2), d = 4,

• Fq = F2, n = 4, T = (1, 2), d = 4.

In particular, we find new explicit maximal flag codes (see Remarks 5, 6, 7 below).

With the help of combinatorics, even it is possible to solve some problems exactly or

give some bounds. Hence, we use related materials to model our problem and give

bounds for the number of distinct maximal flag codes.

This thesis is organized as follows. We fix the notation and give some preliminaries

in Chapter 2. In Chapter 3, we model our problem in graph theory concept, and in

Chapter 4, we solve the problem completely for the set-subset format. We also studied

the equivalency for flag codes in Chapter 5 and our exact results and actual flag codes

are given in Chapter 6 and Section 6.1. We present our results for Fq ∈ {F2,F3,F5},
n = 3, T = (1, 2), and d = 4 along with Fq = F2, n = 4, T = (1, 2), and d = 4 in

Chapter 6 and Section 6.1..
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CHAPTER 2

PRELIMINARIES

In this chapter we give some necessary definitions and notions related to flag codes.

Also, the knowledge of graph theory and its relation with coding theory is being set

in this chapter.

Definition 2. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n−1) be an integer. Let 1 ≤ t1 <

t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). By a flag of type-T in Fnq over Fq,

we mean a chain of Fq-linear subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vs ⊂ Fnq (2.1)

such that

dimFq(V1) = t1, dimFq(V2) = t2, . . . , dimFq(Vs) = ts.

We also use the notation [V1 ⊂ V2 ⊂ · · · ⊂ Vs] to denote the flag in (2.1). Note that

two flags [V1 ⊂ V2 ⊂ · · · ⊂ Vs] and [U1 ⊂ U2 ⊂ · · · ⊂ Us] of type-T in Fnq over Fq are

equal if and only if V1 = U1, V2 = U2, . . . and Vs = Us.

Definition 3. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer.

Let 1 ≤ t1 < t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). By the

ambient space of flags of type-T in Fnq over Fq, we mean the collection of S consist-

ing of all flags of type-T in Fnq over Fq defined in Definition 2.

Definition 4. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer. Let

1 ≤ t1 < t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). By the flag distance

df ([V1 ⊂ V2 ⊂ · · · ⊂ Vs] , [U1 ⊂ U2 ⊂ · · · ⊂ Us]) of two flags [V1 ⊂ V2 ⊂ · · · ⊂ Vs]
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and [U1 ⊂ U2 ⊂ · · · ⊂ Us] of type-T in Fnq over Fq, we mean

df ([V1 ⊂ V2 ⊂ · · · ⊂ Vs] , [U1 ⊂ U2 ⊂ · · · ⊂ Us]) =
s∑
i=1

dS(Ui, Vi)

where

dS(Ui, Vi) = dimFq(Ui) + dimFq(Vi)− 2 dimFq(Ui ∩ Vi)

for 1 ≤ i ≤ s.

Remark 1. If s = 1 and T = (t1), then the ambient space of flags of type-T in Fnq
over Fq is exactly the ambient space of constant t1-dimensional Fq-linear codes in

Fnq , which is a Grassmannian. Moreover, in this case, the flag distance is the same as

the subspace distance [19, 18, 20].

Definition 5. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer. Let

1 ≤ t1 < t2 < · · · < ts ≤ (n− 1). Put T = (t1, t2, . . . , ts). By a flag code of type-T

in Fnq over Fq, we mean a subset C ⊆ S such that |C| ≥ 2, where S is the ambient

space of flags of type-T in Fnq over Fq. Recall that S is defined in Definition 3. By the

minimum flag distance df (C) of the flag code C we mean

df (C) = min{df ([V1 ⊂ V2 ⊂ · · · ⊂ Vs] , [U1 ⊂ U2 ⊂ · · · ⊂ Us]) :

[V1 ⊂ V2 ⊂ · · · ⊂ Vs] , [U1 ⊂ U2 ⊂ · · · ⊂ Us] ∈ C
and [V1 ⊂ V2 ⊂ · · · ⊂ Vs] ̸= [U1 ⊂ U2 ⊂ · · · ⊂ Us]}.

Definition 6. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer. Let 1 ≤
t1 < t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). Let d ≥ 1 be an integer. We

say that d is an admissible minimum distance for a flag code of type-T in Fnq over Fq
if there exists a flag code C of type-T in Fnq over Fq such that df (C) = d.

Definition 7. Let n ≥ 2 be an integer. We say that T is the full type in Fnq over Fq if

s = (n− 1) and T = (1, 2, . . . , n− 1). We say C is a full flag code in Fnq over Fq if

it is a flag code of the full type in Fnq over Fq.

Remark 2. Let n ≥ 2 be an integer. Put T = (1, 2, . . . , n − 1), i.e., the full type in

Fnq over Fq. Let d ≥ 1 be an integer. It is known that if d is an admissible minimum

distance for a flag code of type-T in Fnq over Fq (in the sense of Definition 6), then

df (C) ≤


n2

2
, n is even,

n2−1
2
, n is odd.

(2.2)

6



We refer to [4] for proof.

Definition 8. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer. Let

1 ≤ t1 < t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). Let d ≥ 1 be an

admissible minimum distance for a flag code of type-T in Fnq over Fq. Let AFq ,n(T ; d)

be the positive integer given by

AFq ,n(T ; d)=max{|C|: C is a flag code of type-T in Fnq over Fq with df (C) ≥ d}.

Remark 3. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer. Let

1 ≤ t1 < t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). Let d ≥ 1 be an

admissible minimum distance for a flag code of type-T in Fnq over Fq. In general, it is

a very difficult problem to determine AFq ,n(T ; d). There are very interesting results

for some parameters Fq, n, T, d in [23] and [4].

The following two definitions are crucial for this paper.

Definition 9. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer. Let

1 ≤ t1 < t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). Let d ≥ 1 be

an admissible minimum distance for a flag code of type-T in Fnq over Fq. Let C
be a flag code of type-T in Fnq over Fq such that df (C) = d. We say that C is a

maximal flag code of type-T in Fnq over Fq with df (C) = d if

|C| = AFq ,n(T ; d).

Definition 10. Let n ≥ 2 be an integer. Let 1 ≤ s ≤ (n − 1) be an integer. Let

1 ≤ t1 < t2 < · · · < ts ≤ (n − 1). Put T = (t1, t2, . . . , ts). Let d ≥ 1

be an admissible minimum distance for a flag code of type-T in Fnq over Fq. Let

MFq ,n(T ; d) be the set consisting of maximal flag codes C of type-T in Fnq over Fq with

df (C) = d. Recall that a maximal flag code C of type-T in Fnq over Fq with df (C) = d

is defined in Definition 9.

Remark 4. In this paper, we observe that characterization of MFq ,n(T ; d) given in

Definition 10 is even more difficult than the determination of

AFq ,n(T ; d) given in Definition 8 for some parameters Fq, n, T, d (see Remark 3).
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In this work, we find a way to represent flag codes as graphs. If the type vector is

a duple, we can use bipartite graphs. Moreover, for a general representation of the

type vector, we can represent the nestedness with a partitioned hypergraph and the

hyperedges on it. Hence, the graph-related definitions are given as follows.

Definition 11. A graph G is defined as a pair G = (V,E) where V is a finite set

of elements called vertices, and E stands for the collection of unordered pairs of

elements of V , called edges.

Definition 12. A graph G = (V,E) is called simple if E has no repeated members,

i.e., there exists one edge or no edge between every pair of vertices.

center:v1

center:v2

center:v3

center:v4

Definition 13. Let G = (V,E) be a graph and an edge ei = {u, v}, we say

1. the vertices u and v are the endpoints of ei,

2. u and v are adjacent vertices and write u ∼ v, otherwise u ≁ v.

3. it is said that the edge ei is incident to u and v.

Definition 14. The number of edges that are incident to any specific vertex v ∈ V ,

defines its degree.

Definition 15. The set of all vertices which are adjacent to a specific vertex v ∈ V is

called neighborhood of v and denoted as N(v). Namely,

N(v) = {u ∈ V : {u, v} ∈ E}.

So, the cardinality of N(v) gives us the degree of v.

Definition 16. A subset M ⊂ E is called an independent set or matching if none of

its members is incident to the same vertex.

center:

center:

center:

center:

center:

center:

8



Definition 17. A matching in a graph that cannot be extended is called as maximal

matching and the matching with a maximum possible cardinality is called maximum

matching.

Definition 18. A perfect matching of a graph is a matching (i.e., an independent edge

set) in which every vertex of the graph is incident to exactly one edge of the matching.

center:

center:

center:

center:

center:

center:

Definition 19. In a graph G(V,E), if all the vertices have the same degree, say k, the

graph itself is called k-regular.

Definition 20. For a graph G(V,E), if we can partition the vertex set V into two

disjoint sets, say U and U ′, such that every member of E is incident to both sides’

members, i.e., ∀ei ∈ E, ei = {u′i, ui} where ui ∈ U and u′i ∈ U ′, then this graph is

called as a bipartite graph.

center:

center:

center:

center:

center:

center:

Definition 21. Consider a graph G = (V,E). An |V | × |V | matrix A is called

adjacency matrix if its elements aij = 1 if vertices vi and vj are adjacent and aij = 0

otherwise, where vi, vj ∈ V . A is a symmetric matrix and the sum of each row element

gives the degree of corresponding vertex.

Definition 22. A hypergraph is a generalization of a graph and denoted as H(V,E)

on a finite set of V = {V1, . . . , Vn} is defined as a family of p hyperedges E =

{e1, . . . , ep} where each hyperedge is a non-empty subset of V .

Definition 23. Let k ∈ Z+, for a hypergraph if all hyperedges have the same cardi-

nality k, then this hypergraph is called as k-uniform hypergraph.

For example every simple graph is a 2-uniform hypergraph.

9



For an arbitrary length n, type-(ℓ, n− ℓ), minimum distance 2(ℓ+ (n− ℓ)) such that

1 ≤ ℓ < n
2
, the size of the flag code here is equivalent to the size of ℓ-dimensional

Grassmannian of Fnq . (It is also equal to the (n− ℓ)dimensional Grassmannian).

Consider a bipartite graph whose vertices on one side are composed of Vℓi’s and

the vertices of the other side are representing V(n−ℓ)j and there is an edge between

any two of them if and only if Vℓi ⊂ V(n−ℓ)j . This graph is simple, each side has n

ℓ


q

=

 n

n− ℓ


q

vertices. Also, this graph is

 n− ℓ

ℓ


q

-regular. This will

be called as an "(ℓ, n− ℓ) Grassmannian Correspondence Graph." For simplicity we

will denote α :=

 n

ℓ


q

and β :=

 n− ℓ

ℓ


q

.

The existence of such perfect matching is secured by the result of [16]. Asking how

many flag codes of type-(ℓ, n − ℓ) in Fnq over Fq and minimum distance 2(ℓ + (n −
ℓ)) exist is the same question with asking how many complete point-line (plane-

hyperplane) correspondence exist. In this work, we find the exact result for this ques-

tion for some small parameters. However, type-(ℓ, n − ℓ) and in an n-dimensional

Vector Space, finding the number of all maximal flag codes does not seem to be an

easy question. We obtain upper and lower bounds for type-(ℓ, n− ℓ) for an arbitrary

length n as a consequence of [3, 9, 25, 27].

Permanent of an n× n matrix A = [aij]n×n is defined by

perA =
∑ n∏

i=1

aiσ(i)

where the summation extends over all permutations σ of {1, 2, . . . , n}. The permanent

of a (0, 1)-matrix can be interpreted as the number of perfect matchings in a bipartite

graph, [5].

A permanent of a bipartite graph whose partitions represent members of ℓ-dimensional

Grassmannian and (n−ℓ)-dimensional Grassmannian is the number of perfect match-

ings occur in the graph and that is exactly an illustration of maximal flag codes of

type-(ℓ, n− ℓ) in Fnq over Fq.

In order to generalize adjacency matrices to higher orders, we can use multi-dimensi-

onal arrays called tensors. Let T be an r-dimensional tensor that has size n1×· · ·×nr.
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Each element of T is shown with Ti1,...,ir where ik ∈ {1, . . . , nj}. Here we need

another material called marginal.

Definition 24. Let T be an r-dimensional tensor. A marginal is defined as an (r −
1)−section of an r-dimensional tensor which is derived by fixing one of the indices of

T.

In the literature, especially the work [11], tells us that finding a maximum cardinal-

ity matching in an r-partite, r-uniform hypergraph for r ≥ 3 is NP-Complete. The

case corresponding to triple-type vector maximal flag codes is called as MAX-3DM

problem [21]. To define the exact number there have been studies in the literature and

the best-known approximation belongs to [10]. Here even r = 3 case has not been

determined clearly, yet. However, the bounds of the number of maximal flag codes

for an arbitrary type can be extended for hypermatrices deriving nicely from the in-

cidence relations of hyperedges in the corresponding Grassmannian Correspondence

Hypergraph.

11
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CHAPTER 3

BOUNDS ON THE NUMBER OF MAXIMAL FLAG CODES

FOR CERTAIN FORMS OF THE TYPE VECTOR

The upper bound for the most general case we achieved is given in the first Theorem.

This is derived by modeling all of the following works to the extension of results

found for bipartite simple graphs to r-partite, r-uniform hypergraphs.

Theorem 1. If we are given a type vector T ∗ := (t1, . . . , tr) and tasked to build a flag

code with type-T ∗ in Fnq over Fq the followings are true:

1. Minimum admissible flag distance, d∗ is equal to 2r,

2. AFq ,n(T
∗; d∗) = min{|Gq(t1, n)|, . . . , |Gq(tr, n)|},

3. |MFq ,n(T
∗; d∗)| ≤

N∏
i

(γi!)
γi .

where γi is the sum of marginals of the corresponding tensor and N is the total

number of vertices of the Grassmannian Correspondence Hypergraph.

Proof. 1. It is a direct result of the subspace distance for distinct elements of a

Grassmannian.

2. When we model our flag to r-partite, r-uniform hypergraphs, we realize that

each hyperedge occurs by the relation of the nested subspaces of Fnq over Fq.

Therefore, the size of the maximum matching is limited by the minimum size

of the parts.

13



3. A maximal flag code of type-(t1, . . . , tr) with an admissible distance can be

represented with an r-partite and r-uniform hypergraph where the vertex set

can be written as a union V = ∪ri=1Vi with disjoint Vi’s and each of hyperedges

is incident to a single vertex from each Vi. The existence of a matching in an r-

dimensional hypergraph was given by [1] which provides equivalency of Hall’s

Theorem for r-partite hypergraphs.

Therefore, an r-partite, r-uniform hypergraph H = (V1 ∪ · · · ∪ Vr, E) can

be represented as an r-dimensional tensor. This completes the association of

each vertex class to a tensor dimension. Let |Vi| = ni for 1 ≤ i ≤ r, the

tensor T ∈ {0, 1}n1×···×nr has a nonzero element Tn1,...,nr if and only if e0 =

{v1, . . . , vr} ∈ E, where vi ∈ Vi for 1 ≤ i ≤ r. Then, T is called the adjacency

tensor of H .

If we assign γi to the summation of each marginal of the adjacency tensor T,

then following the works done by [3] and references therein, we can reach the

upper bound given.

Theorem 2. Let Fq be a finite field for an arbitrary prime q and Fnq is an n-dimensional

Vector Space over Fq. The set MFq ,n((ℓ, n − ℓ); 4ℓ) of maximal flag codes of type-

(ℓ, n− ℓ) in Fnq is bounded as

(
β

α
)α.α! ≤ |MFq ,n((ℓ, n− ℓ); 4ℓ)| ≤

α∏
1

(β!)
1
β . (3.1)

Recall that α =

 n

ℓ


q

and β =

 n− ℓ

ℓ


q

.

Proof. Consider G as the (ℓ, n− ℓ) Grassmannian Correspondence Graph. Here, the

total number of the edges in G is α. β.

Having type-(ℓ, n− ℓ) flag code with minimum distance 4ℓ sets a perfect matching in

the graph described above. Remember that ℓ < n
2

and dS = 2ℓ − 2 dim(Ui ∩ Vi) for

constant dimension codes. It is a perfect matching because in each code of constant

dimension, subspaces are used once.

14



The adjacency matrix of this graph is a

 n

ℓ


q

×

 n

ℓ


q

dimensioned matrix whose

entries are either 0 or 1 according to the corresponding vertices’ relations. If the

vertex vi is connected to the vertex vj with an edge, then the entry aij of the matrix A

is 1, otherwise 0.

After all these settlements, counting distinct maximal flag codes of type- (ℓ, n − ℓ)

with minimum distance 4ℓ is just the same as counting the number of distinct perfect

matchings in a bipartite graph and this is an NP-complete problem.

For any vector space and any ℓ, the number of distinct maximal flag codes can be

interpreted as the number of permanents of a (0, 1)-matrix which is also the number

of perfect matchings in a balanced β-regular bipartite graph.

For the upper bound of (3.2) we use the number of spanning 2-regular subgraphs of

G, namely H which consist of even cycles such that H is being counted 2c times,

where c is the number of such cycles within more than 2 vertices. In fact, each of the

perfect matching pairs P1, P2 is a copy of H which is a 2-regular subgraph of G. For

the cycles of length t>2, we have two possibilities of its origin, either P1 or P2.

On the other hand, the number of 2-regular subgraphs of G is equal to the permanent

of the adjacency matrix. Here cycles with odd lengths and length 2 are allowed. Such

subgraphs are counted 2c, where c is the number of length t>2 cycles. Hence the

square root of the number of permanents for the adjacency matrix is the limit of the

number of perfect matchings. Therefore, the desired limit is achieved by the work of

Bregman-Minc, where β is the cardinality of each of α vertices in G.

For the lower bound, we will use the results of [12] and [14]. Here our (ℓ, n − ℓ)

Grassmannian Correspondence Graph has an α×α adjacency matrix that is β-regular.

The number of perfect matchings here bounded by (β
α
)α. α!. This bound has been

carefully selected among the results in the literature as the best match to the number

we seek as β will be the sum of each row.

The lower bound in 3.2 gives better results for some cases in Table 3.1. For higher

15



characteristics, the bound given below gives better results as seen in the table.

Theorem 3. Let Fq be a finite field for an arbitrary prime q and Fnq is an n-dimensional

Vector Space over Fq. The set MFq ,n((ℓ, n − ℓ); 4ℓ) of maximal flag codes of type-

(ℓ, n− ℓ) in Fnq is bounded as

(
(β − 1)β−1

ββ−2
)α ≤ |MFq ,n((ℓ, n− ℓ); 4ℓ)|. (3.2)

In Table 3.1 we compare the upper bounds and lower bounds with the exact results

that we know for small parameters.

For an arbitrary duble type vector apart from (ℓ, n−ℓ), the Grassmannian Correspon-

dence Graph will be an unbalanced bipartite graph. If the type vector in the form of

(t1, t2) for any 1 ≤ t1 < t2 ≤ (n− 1), then the volumes of the parts of our graph will

be

 n

t1


q

and

 n

t2


q

. Moreover, each of the left-hand side vertices is connected

to the same number of right-hand side ones. The number of maximal flag codes of

type-(t1, t2) will correspond to the number of maximum matchings here.
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Table 3.1: Maximal Flag Codes of Some Certain Types
Length(n) type q Exact Results Upper Bounds Lower Bounds by 2 Lower Bounds by 3

3 (1, 2) 2 24 65 13 7,49
3 (1, 2) 3 3 852 30 597 1379 899
3 (1, 2) 4 18 534 400 540 208 276 4 169 738 3 450 873
3 (1, 2) 5 4 598 378 639 550 579 274 705 236 857 638 995 826 718 707 286 916 498
3 (1, 2) 7 * 6, 52× 1032 9, 98× 1027 2, 17× 1028

3 (1, 2) 8 * 1, 25× 1045 1, 94× 1039 6, 11× 1039

3 (1, 2) 9 * 4, 94× 1059 7, 22× 1052 3, 35× 1053

3 (1, 2) 11 * 1, 61× 1096 1, 7× 1087 1, 76× 1088

3 (1, 2) 13 * 1, 02× 10143 6, 25× 10131 1, 49× 10132

4 (1, 3) 2 24 601 472 85 857 793 14 177 555 4 479 809
4 (1, 3) 3 * 1, 37× 1030 2, 43× 1028 7, 44× 1027

4 (1, 3) 4 * 5, 91× 1079 6, 85× 1076 2, 33× 1076

4 (1, 3) 5 * 4, 67× 10170 2, 5× 10166 1, 02× 10166

4 (1, 3) 7 * 3, 97× 10537 2, 15× 10530 1, 46× 10530

4 (1, 3) 8 * 4, 46× 10846 5, 81× 10837 5, 36× 10837

4 (1, 3) 9 * 5, 23× 101262 1, 41× 101252 1, 8× 101252

5 (1, 4) 2 * 1, 09× 1025 1, 39× 1024 2, 85× 1023

5 (1, 4) 3 * 1, 44× 10146 1, 09× 10144 1, 75× 10143

5 (1, 4) 4 * 2, 04× 10515 3, 18× 10511 5, 15× 10510

5 (2, 3) 2 * 9, 6× 1081 1, 48× 1065 5, 36× 1068

6 (1, 5) 2 * 8, 4× 1068 7, 85× 1067 1, 1× 1067

6 (2, 4) 2 * 9, 4× 10725 3, 21× 10706 4, 83× 10708

7 (1, 6) 2 * 9, 55× 10175 6, 49× 10174 6, 32× 10173

7 (2, 5) 2 * 1, 16× 104709 2, 91× 104685 **
7 (3, 4) 2 * 6, 83× 101126 5, 99× 101036 **
8 (1, 7) 2 * 5, 07× 10475 1, 25× 10474 1, 45× 10426

* unknown in the literature.

** computationally hard to calculate.
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CHAPTER 4

MAXIMAL SET FLAG CODES

Instead of an n-dimensional vector space V and its subspaces Vi, we consider a set S

of cardinality n and its subsets.

The subspace distance corresponds to the subset distance given by

dsetf (Si, Sj) = #(Si ∪ Sj)−#(Si ∩ Sj).

For distinct subsets with same number of elements, dsetf = 2. Therefore, in the set

flag code concept: if our type vector has r elements, then the lower bound for the

minimum admissible distance for the set flag code is 2r.

The exact results of 4.1 can be detailed as follows:

Case 1: n = 3, type-(1, 2), dsetf = 4. Then, say A = {1, 2, 3} and so the subsets are

listed as:

V1 = {1},
V2 = {2},
V3 = {3},

W1 = {1, 2},
W2 = {1, 3},
W3 = {2, 3}.

Then, the possible distinct set flag codes are:

F1 = {[V1 ⊂ W1] , [V2 ⊂ W2] , [V3 ⊂ W3]},
F2 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W3]}.
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Case 2: n = 4, type-(1, 3), dsetf = 4. Then, say A = {1, 2, 3, 4} and so the subsets
are listed as:

V1 = {1},

V2 = {2},

V3 = {3},

V4 = {4},

W1 = {1, 2, 3},

W2 = {1, 2, 4},

W3 = {1, 3, 4},

W4 = {2, 3, 4}.

Then, the possible distinct set flag codes are:

F1 = {[V1 ⊂ W1] , [V2 ⊂ W2] , [V3 ⊂ W3] , [V4 ⊂ W4]},

F2 = {[V1 ⊂ W1] , [V2 ⊂ W2] , [V3 ⊂ W4] , [V4 ⊂ W3]},

F3 = {[V1 ⊂ W1] , [V2 ⊂ W4] , [V3 ⊂ W3] , [V4 ⊂ W2]},

F4 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W3] , [V4 ⊂ W4]},

F5 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W4] , [V4 ⊂ W3]},

F6 = {[V1 ⊂ W2] , [V2 ⊂ W4] , [V3 ⊂ W1] , [V4 ⊂ W3]},

F7 = {[V1 ⊂ W3] , [V2 ⊂ W1] , [V3 ⊂ W4] , [V4 ⊂ W2]},

F8 = {[V1 ⊂ W3] , [V2 ⊂ W2] , [V3 ⊂ W1] , [V4 ⊂ W4]},

F9 = {[V1 ⊂ W3] , [V2 ⊂ W4] , [V3 ⊂ W1] , [V4 ⊂ W2]}.

Case 3: n = 4, type-(1, 2), dsetf = 4. Then, say A = {1, 2, 3, 4} and so the subsets
are listed as:

V1 = {1},

V2 = {2},

V3 = {3},

V4 = {4},

W1 = {1, 2},

W2 = {1, 3},

W3 = {1, 4},

W4 = {2, 3},

W5 = {2, 4},

W6 = {3, 4}.
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Then, the possible distinct set flag codes are:

F1 = {[V1 ⊂ W1] , [V2 ⊂ W4] , [V3 ⊂ W2] , [V4 ⊂ W3]},

F2 = {[V1 ⊂ W1] , [V2 ⊂ W4] , [V3 ⊂ W2] , [V4 ⊂ W5]},

F3 = {[V1 ⊂ W1] , [V2 ⊂ W4] , [V3 ⊂ W2] , [V4 ⊂ W6]},

F4 = {[V1 ⊂ W1] , [V2 ⊂ W4] , [V3 ⊂ W6] , [V4 ⊂ W3]},

F5 = {[V1 ⊂ W1] , [V2 ⊂ W4] , [V3 ⊂ W6] , [V4 ⊂ W5]},

F6 = {[V1 ⊂ W1] , [V2 ⊂ W5] , [V3 ⊂ W2] , [V4 ⊂ W3]},

F7 = {[V1 ⊂ W1] , [V2 ⊂ W5] , [V3 ⊂ W2] , [V4 ⊂ W6]},

F8 = {[V1 ⊂ W1] , [V2 ⊂ W5] , [V3 ⊂ W4] , [V4 ⊂ W3]},

F9 = {[V1 ⊂ W1] , [V2 ⊂ W5] , [V3 ⊂ W4] , [V4 ⊂ W6]},

F10 = {[V1 ⊂ W1] , [V2 ⊂ W5] , [V3 ⊂ W6] , [V4 ⊂ W3]},

F11 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W4] , [V4 ⊂ W3]},

F12 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W4] , [V4 ⊂ W5]},

F13 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W4] , [V4 ⊂ W6]},

F14 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W6] , [V4 ⊂ W3]},

F15 = {[V1 ⊂ W2] , [V2 ⊂ W1] , [V3 ⊂ W6] , [V4 ⊂ W5]},

F16 = {[V1 ⊂ W2] , [V2 ⊂ W4] , [V3 ⊂ W6] , [V4 ⊂ W3]},

F17 = {[V1 ⊂ W2] , [V2 ⊂ W4] , [V3 ⊂ W6] , [V4 ⊂ W5]},

F18 = {[V1 ⊂ W2] , [V2 ⊂ W5] , [V3 ⊂ W4] , [V4 ⊂ W3]},

F19 = {[V1 ⊂ W2] , [V2 ⊂ W5] , [V3 ⊂ W4] , [V4 ⊂ W6]},

F20 = {[V1 ⊂ W2] , [V2 ⊂ W5] , [V3 ⊂ W6] , [V4 ⊂ W3]},

F21 = {[V1 ⊂ W3] , [V2 ⊂ W1] , [V3 ⊂ W2] , [V4 ⊂ W5]},

F22 = {[V1 ⊂ W3] , [V2 ⊂ W1] , [V3 ⊂ W2] , [V4 ⊂ W6]},

F23 = {[V1 ⊂ W3] , [V2 ⊂ W1] , [V3 ⊂ W4] , [V4 ⊂ W5]},

F24 = {[V1 ⊂ W3] , [V2 ⊂ W1] , [V3 ⊂ W4] , [V4 ⊂ W6]},

F25 = {[V1 ⊂ W3] , [V2 ⊂ W1] , [V3 ⊂ W6] , [V4 ⊂ W5]},

F26 = {[V1 ⊂ W3] , [V2 ⊂ W4] , [V3 ⊂ W2] , [V4 ⊂ W5]},

F27 = {[V1 ⊂ W3] , [V2 ⊂ W4] , [V3 ⊂ W2] , [V4 ⊂ W6]},

F28 = {[V1 ⊂ W3] , [V2 ⊂ W4] , [V3 ⊂ W6] , [V4 ⊂ W5]},

F29 = {[V1 ⊂ W3] , [V2 ⊂ W5] , [V3 ⊂ W2] , [V4 ⊂ W6]},

F30 = {[V1 ⊂ W3] , [V2 ⊂ W5] , [V3 ⊂ W4] , [V4 ⊂ W6]}.

Case 4: n = 4, type-(2, 3), dsetf = 4. Then, say A = {1, 2, 3, 4} and so the subsets
are listed as:

W1 = {1, 2},

W2 = {1, 3},

W3 = {1, 4},

W4 = {2, 3},

W5 = {2, 4},

W6 = {3, 4},

Y1 = {1, 2, 3},

Y2 = {1, 2, 4},

Y3 = {1, 3, 4},

Y4 = {2, 3, 4}.
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Then, the possible distinct set flag codes are:

F1 = {[W1 ⊂ Y1] , [W3 ⊂ Y2] , [W2 ⊂ Y3] , [W4 ⊂ Y4]},

F2 = {[W1 ⊂ Y1] , [W3 ⊂ Y2] , [W2 ⊂ Y3] , [W5 ⊂ Y4]},

F3 = {[W1 ⊂ Y1] , [W3 ⊂ Y2] , [W2 ⊂ Y3] , [W6 ⊂ Y4]},

F4 = {[W1 ⊂ Y1] , [W3 ⊂ Y2] , [W6 ⊂ Y3] , [W4 ⊂ Y4]},

F5 = {[W1 ⊂ Y1] , [W3 ⊂ Y2] , [W6 ⊂ Y3] , [W5 ⊂ Y4]},

F6 = {[W1 ⊂ Y1] , [W5 ⊂ Y2] , [W2 ⊂ Y3] , [W4 ⊂ Y4]},

F7 = {[W1 ⊂ Y1] , [W5 ⊂ Y2] , [W2 ⊂ Y3] , [W6 ⊂ Y4]},

F8 = {[W1 ⊂ Y1] , [W5 ⊂ Y2] , [W3 ⊂ Y3] , [W4 ⊂ Y4]},

F9 = {[W1 ⊂ Y1] , [W5 ⊂ Y2] , [W3 ⊂ Y3] , [W6 ⊂ Y4]},

F10 = {[W1 ⊂ Y1] , [W5 ⊂ Y2] , [W6 ⊂ Y3] , [W4 ⊂ Y4]},

F11 = {[W2 ⊂ Y1] , [W1 ⊂ Y2] , [W3 ⊂ Y3] , [W4 ⊂ Y4]},

F12 = {[W2 ⊂ Y1] , [W1 ⊂ Y2] , [W3 ⊂ Y3] , [W5 ⊂ Y4]},

F13 = {[W2 ⊂ Y1] , [W1 ⊂ Y2] , [W3 ⊂ Y3] , [W6 ⊂ Y4]},

F14 = {[W2 ⊂ Y1] , [W1 ⊂ Y2] , [W6 ⊂ Y3] , [W4 ⊂ Y4]},

F15 = {[W2 ⊂ Y1] , [W1 ⊂ Y2] , [W6 ⊂ Y3] , [W5 ⊂ Y4]},

F16 = {[W2 ⊂ Y1] , [W3 ⊂ Y2] , [W6 ⊂ Y3] , [W4 ⊂ Y4]},

F17 = {[W2 ⊂ Y1] , [W3 ⊂ Y2] , [W6 ⊂ Y3] , [W5 ⊂ Y4]},

F18 = {[W2 ⊂ Y1] , [W5 ⊂ Y2] , [W3 ⊂ Y3] , [W4 ⊂ Y4]},

F19 = {[W2 ⊂ Y1] , [W5 ⊂ Y2] , [W3 ⊂ Y3] , [W6 ⊂ Y4]},

F20 = {[W2 ⊂ Y1] , [W5 ⊂ Y2] , [W6 ⊂ Y3] , [W4 ⊂ Y4]},

F21 = {[W4 ⊂ Y1] , [W1 ⊂ Y2] , [W2 ⊂ Y3] , [W5 ⊂ Y4]},

F22 = {[W4 ⊂ Y1] , [W1 ⊂ Y2] , [W2 ⊂ Y3] , [W6 ⊂ Y4]},

F23 = {[W4 ⊂ Y1] , [W1 ⊂ Y2] , [W3 ⊂ Y3] , [W5 ⊂ Y4]},

F24 = {[W4 ⊂ Y1] , [W1 ⊂ Y2] , [W3 ⊂ Y3] , [W6 ⊂ Y4]},

F25 = {[W4 ⊂ Y1] , [W1 ⊂ Y2] , [W6 ⊂ Y3] , [W5 ⊂ Y4]},

F26 = {[W4 ⊂ Y1] , [W3 ⊂ Y2] , [W2 ⊂ Y3] , [W5 ⊂ Y4]},

F27 = {[W4 ⊂ Y1] , [W3 ⊂ Y2] , [W2 ⊂ Y3] , [W6 ⊂ Y4]},

F28 = {[W4 ⊂ Y1] , [W3 ⊂ Y2] , [W6 ⊂ Y3] , [W5 ⊂ Y4]},

F29 = {[W4 ⊂ Y1] , [W5 ⊂ Y2] , [W2 ⊂ Y3] , [W6 ⊂ Y4]},

F30 = {[W4 ⊂ Y1] , [W5 ⊂ Y2] , [W3 ⊂ Y3] , [W6 ⊂ Y4]}.

Case 5: n = 4, type-(1, 2, 3), dsetf = 6. Then, say A = {1, 2, 3, 4} and so the subsets

are listed as:
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V1 = {1},

V2 = {2},

V3 = {3},

V4 = {4},

W1 = {1, 2},

W2 = {1, 3},

W3 = {1, 4},

W4 = {2, 3},

W5 = {2, 4},

W6 = {3, 4},

Y1 = {1, 2, 3},

Y2 = {1, 2, 4},

Y3 = {1, 3, 4},

Y4 = {2, 3, 4}.

Then, the possible distinct full set flag codes are:

F1 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F2 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W3 ⊂ Y4]},

F3 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F4 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W5 ⊂ Y4]},

F5 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F6 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W6 ⊂ Y4]},

F7 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F8 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W3 ⊂ Y1]},

F9 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F10 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W5 ⊂ Y2]},

F11 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F12 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y1]},

F13 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F14 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W6 ⊂ Y3]},

F15 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F16 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y1]},

F17 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F18 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W6 ⊂ Y3]},

F19 = {[V1 ⊂ W1 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F20 = {[V1 ⊂ W1 ⊂ Y2] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y1]},

F21 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F22 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W3 ⊂ Y4]},

F23 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F24 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W5 ⊂ Y4]},

F25 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F26 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W6 ⊂ Y4]},

F27 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F28 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W3 ⊂ Y1]},

F29 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F30 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W5 ⊂ Y2]},
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F31 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F32 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W3 ⊂ Y1]},

F33 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F34 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W5 ⊂ Y2]},

F35 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F36 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W3 ⊂ Y1]},

F37 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F38 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W6 ⊂ Y3]},

F39 = {[V1 ⊂ W2 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W3 ⊂ Y4]},

F40 = {[V1 ⊂ W2 ⊂ Y3] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W3 ⊂ Y1]},

F41 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F42 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y2]},

F43 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F44 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W6 ⊂ Y3]},

F45 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F46 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y2]},

F47 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F48 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W6 ⊂ Y3]},

F49 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W1 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F50 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W1 ⊂ Y1] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y2]},

F51 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F52 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W5 ⊂ Y2]},

F53 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F54 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W6 ⊂ Y3]},

F55 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y2] , [V3 ⊂ W6 ⊂ Y3] , [V4 ⊂ W5 ⊂ Y4]},

F56 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W4 ⊂ Y3] , [V3 ⊂ W6 ⊂ Y4] , [V4 ⊂ W5 ⊂ Y2]},

F57 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F58 = {[V1 ⊂ W3 ⊂ Y4] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W2 ⊂ Y1] , [V4 ⊂ W6 ⊂ Y3]},

F59 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y2] , [V3 ⊂ W4 ⊂ Y3] , [V4 ⊂ W6 ⊂ Y4]},

F60 = {[V1 ⊂ W3 ⊂ Y1] , [V2 ⊂ W5 ⊂ Y4] , [V3 ⊂ W4 ⊂ Y2] , [V4 ⊂ W6 ⊂ Y3]}.

Observation: This new approach corresponds to the limit case with q = 1 of the flag

codes.

Idea: Finding optimal cardinalities and characterizations seems easier for some small

parameters.

Question: How many admissible type vectors exist for a set with n elements?

In the set flag codes, as the proper subsets will determine the code, we can have
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Table 4.1: Maximal Set Flag Codes
|S| type dsetf Size of the maximal set flag code Number of the maximal set flag codes

3 (1, 2) * 4 3 = (q2 + q + 1)|q=1 2

4 (1, 2) 4 4 = (q3 + q2 + q + 1)|q=1 30

4 (1, 3) 4 4 = (q3 + q2 + q + 1)|q=1 9

4 (2, 3) 4 4 = (q3 + q2 + q + 1)|q=1 30

4 (1, 2, 3) * 6 4 = (q3 + q2 + q + 1)|q=1 60

5 (1, 4) 4 5 = (q4 + q3 + q2 + q + 1)|q=1 44

5 (2, 3) 4 10 = (q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1)|q=1 60

5 (1, 2, 3) 6 5 = (q4 + q3 + q2 + q + 1)|q=1 43632

6 (1, 5) 4 6 = (q5 + q4 + q3 + q2 + q + 1)|q=1 265

6 (2, 4) 4 14 = (q8 + q7 + 2q6 + 2q5 + 2q4 + 2q3 + 2q2 + q + 1)|q=1 3013854

7 (1, 6) 4 7 = (q6 + q5 + q4 + q3 + q2 + q + 1)|q=1 1854

8 (1, 7) 4 8 = (q7 + q6 + q5 + q4 + q3 + q2 + q + 1)|q=1 14833

9 (1, 8) 4 9 = (q8 + q7 + q6 + q5 + q4 + q3 + q2 + q + 1)|q=1 133496

* full flags.

(2n−1−1) type vectors as we exclude the empty set. All the calculations for maximal

flag codes can be operated more easily for the set flag codes and this also reduces the

need for computational work and the necessary space for the results.

Theorem 4. If we are given a type vector T ∗ := (t1, . . . , tr) with the set flag dis-

tance 2r, the set flag code in a set S with n elements exists with cardinality of

min{

 n

t1

 , . . . ,

 n

tr

} and the number of such maximal set flag codes can be

bounded as

|MS,n(T
∗; 2r)| ≤

N∏
i

(γi!)
γi , (4.1)

where γi is the sum of marginals of the corresponding tensor and N is the total

number of vertices of the Grassmannian Correspondence Hypergraph.
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CHAPTER 5

EQUIVALENT CODES

Take π as a permutation of {1, . . . , n} and α1, . . . , αn non-zero elements of Fq along

with φ = φα1,...,αn as diagonal matrix with entries α1, . . . , αn. Therefore, ψ = φ ◦ π
is a monomial transformation on Fnq .

Observation: [V1 ⊆ V2 ⊆ · · · ⊆ Vs] is a flag of type (t1, t2, . . . , ts) in Fnq if and only

if [ψ(V1) ⊆ ψ(V2) ⊆ · · · ⊆ ψ(Vs)] is a flag of type (t1, t2, . . . , ts) in Fnq .

Observation: C is a flag code of type (t1, t2, . . . , ts) with df (C) = d if and only if

ψ(C) is a flag code of type (t1, t2, . . . , ts) with df (ψ(C)) = d.

We call C and ψ(C) are monomially equivalent and denote C ∼
ψ
ψ(C).

For (6.7) monomially equivalent of the ones that can be obtained by the work of [23]

are listed as:

F1 →
ψ1

F1,

F1 →
ψ2

F23,

F1 →
ψ3

F11,

F1 →
ψ4

F20,

F1 →
ψ5

F7,

F1 →
ψ6

F16,

F2 →
ψ1

F2,

F2 →
ψ2

F12,

F2 →
ψ3

F24,

F2 →
ψ4

F15,

F2 →
ψ5

F17,

F2 →
ψ6

F8,

F3 →
ψ1

F3,

F3 →
ψ2

F4,

F3 →
ψ3

F6,

F3 →
ψ4

F5,

F3 →
ψ5

F19,

F3 →
ψ6

F18,

where ψ1 = I, ψ2 = (12), ψ3 = (13), ψ4 = (23), ψ5 = (12)(13), ψ6 = (12)(23).
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Result: The orbits of {F1,F2,F3} can be listed as follows

F1 = {F1,F23,F11,F20,F7,F16},
F2 = {F2,F12,F24,F15,F17,F8},
F3 = {F3,F4,F6,F5,F19,F18}.

F22 = {F22,F10,F14,F21,F9,F13}.

The latter one is a new class derived from our extension. If we investigate a similar

case for (6.24), the number of monomially equivalent ones to the results of [23] will

be 5.4! = 120. We found 328672649760 of them in our search. The remaining ones

also can be divided into equivalency classes as shown here.
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CHAPTER 6

CHARACTERIZATION OF ALL MAXIMAL FLAG CODES OF

TYPE-(1, 2) IN F3
q and F4

q WITH d = 4 FOR SMALL q

Let Fq be a finite field, let n = 3, T = (1, 2) and d = 4. Using the information

provided by [23], we obtain that

AFq ,3((1, 2); 4) = q2 + q + 1.

Let C be a maximal flag code of type-(1, 2) with d = 4 in F3
q (see Definition 9). Note

that C is also full flag code in F3
q over Fq (see Definition 7) and d = 4 satisfies (2.2)

with n = 3. Note that the number of distinct 2-dimensional Fq-linear subspaces in F3
q

is  3

2


q

= q2 + q + 1.

Let N = q2 + q + 1 and W1, . . . ,WN be a fixed enumeration of 2-dimensional

Fq-linear subspaces in F3
q .

Let [U1 ⊂ U2], [V1 ⊂ V2] ∈ C be two distinct flags. We observe that

df ([U1 ⊂ U2] , [V1 ⊂ V2]) = dS(U1, V1) + dS(U2, V2)

and dS(U1, V1) ≤ 2, dS(U2, V2) ≤ 2
(6.1)

where

dS(U1, V1) = 2.1− 2 dim(U1 ∩ V1) and dS(U2, V2) = 2.2− 2 dim(U2 ∩ V2). (6.2)

Moreover,

dim(U1 ∩ V1) ≥ 1 and (dim(U2 ∩ V2) = 1 ⇐⇒ U2 ̸= V2) . (6.3)
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The last statement follows from the observation

dim(⟨U2, V2⟩) + dim(U2 ∩ V2) = 2 + 2 and ⟨U2, V2⟩ ⊂ F3
q.

Combining (6.1), (6.2) and (6.3), we obtain that

U1 ̸= V1 and U2 ̸= V2.

Recall that we choose and fix the enumeration W1, . . . ,WN of 2-dimensional

Fq-linear subspaces F3
q . We further choose and fix an enumeration of 1-dimensional

Fq-linear subspaces F3
q as V1, . . . , VN . These arguments imply that a maximal flag

code C of type-(1, 2) with d = 4 in F3
q is represented uniquely as an N -tuple.

C = [Wi1 ,Wi2 , . . . ,WiN ] (6.4)

where

V1 ⊂ Wi1 , V2 ⊂ Wi2 , . . . , VN ⊂ WiN (6.5)

and

(i1, i2, . . . , iN) is a permutation of (1, 2, . . . , N). (6.6)

Hence, the problem of finding a maximal flag code of type-(1, 2) with d = 4 in F3
q

is exactly finding a permutation (i1, i2, . . . , iN) of (1, 2, . . . , N) as in (6.6) such that

(6.5) holds. We solve this problem completely if q = 2 and q = 3 using an exhaustive

computer search via MAGMA [8] in the following two theorems.

First, we consider the case of q = 2.

Theorem 5. Let Fq be a finite field with q = 2. Let n = 3, T = (1, 2) and d = 4. Let

N =

 3

2


q

= q2 + q + 1 = 7 be the number of distinct 2-dimensional subspaces

in F3
q . Note that N is also equal to the number of distinct 1-dimensional subspaces

of F3
q . Let V1, . . . , VN be an enumeration of all 1-dimensional subspaces of F3

q given

explicitly as follows:

V1 = ⟨(0, 0, 1)⟩ , V2 = ⟨(0, 1, 0)⟩ , V3 = ⟨(1, 0, 0)⟩ , V4 = ⟨(0, 1, 1)⟩ ,
V5 = ⟨(1, 1, 0)⟩ , V6 = ⟨(1, 1, 1)⟩ , V7 = ⟨(1, 0, 1)⟩ .
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Let W1, . . . ,WN be an enumeration of all 2-dimensional subspaces of F3
q given ex-

plicitly as follows:

W1 = rs

(
1 0 0

0 1 0

)
,W2 = rs

(
1 0 0

0 1 1

)
,W3 = rs

(
1 0 1

0 1 0

)
,W4 = rs

(
1 0 1

0 1 1

)
,

W5 = rs

(
1 0 0

0 0 1

)
,W6 = rs

(
1 1 0

0 0 1

)
,W7 = rs

(
0 1 0

0 0 1

)
.

Here, rs denotes the row space of the corresponding 2× 3 matrix over Fq.

Under the notation of (6.4), (6.5), (6.6), the set MF2,3((1, 2); 4) of maximal flag codes

of type-(1, 2) in F3
q is exactly the set of 24 flag codes F1, . . . , F24 given explicitly as

follows:

F1 = [W7,W1,W2,W4,W6,W3,W5] ,

F2 = [W6,W3,W5,W7,W1,W2,W4] ,

F3 = [W5,W7,W1,W2,W4,W6,W3] ,

F4 = [W7,W1,W5,W2,W4,W6,W3] ,

F5 = [W7,W1,W5,W2,W6,W3,W4] ,

F6 = [W7,W1,W5,W4,W6,W2,W3] ,

F7 = [W7,W3,W5,W2,W1,W6,W4] ,

F8 = [W7,W3,W2,W4,W1,W6,W5] ,

F9 = [W7,W3,W1,W2,W4,W6,W5] ,

F10 = [W7,W3,W1,W4,W6,W2,W5] ,

F11 = [W6,W7,W1,W2,W4,W3,W5] ,

F12 = [W6,W7,W2,W4,W1,W3,W5] ,

(6.7)
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F13 = [W6,W7,W5,W4,W1,W2,W3] ,

F14 = [W6,W7,W5,W2,W1,W3,W4] ,

F15 = [W6,W3,W1,W7,W4,W2,W5] ,

F16 = [W6,W1,W5,W7,W4,W2,W3] ,

F17 = [W6,W1,W2,W7,W4,W3,W5] ,

F18 = [W5,W7,W1,W2,W6,W3,W4] ,

F19 = [W5,W7,W1,W4,W6,W2,W3] ,

F20 = [W5,W7,W2,W4,W1,W6,W3] ,

F21 = [W5,W1,W2,W7,W4,W6,W3] ,

F22 = [W5,W1,W2,W7,W6,W3,W4] ,

F23 = [W5,W3,W1,W7,W6,W2,W4] ,

F24 = [W5,W3,W2,W7,W1,W6,W4] .

Proof. There are exactly 7! = 5040 permutations of (1, . . . , N) = (1, . . . , 7). For

each permutation π = (i1, . . . , iN) of (1, . . . , 7) we check if (6.5) holds. By MAGMA,

we obtain that the permutations π = (i1, . . . , iN) of (1, . . . , 7) satisfying (6.5) are ex-

actly the ones corresponding to F1, . . . ,F24.

Let g be a generator of F∗
23 and let Ŵ1, . . . , Ŵ7 be all 2-dimensional subspaces of

F23 . There exists 1 ≤ i ≤ 7 such that 1 ∈ Wi, by renumbering let 1 ∈ Ŵ1. Let

Ŵ (j) = ⟨1, gj⟩ for 1 ≤ j ≤ 6. As g3 = g + 1, we observe that

⟨1, g⟩ = ⟨1, g3⟩ ,
⟨1, g2⟩ = ⟨1, g6⟩ ,
⟨1, g4⟩ = ⟨1, g5⟩ .

Let J = {1, 2, 4}. Note that ⟨1, gj1⟩ ≠ ⟨1, gj2⟩ and

dimFq(⟨1, gj1⟩) = dimFq(⟨1, gj2⟩) = 2 if j1, j2 ∈ J and j1 ̸= j2 . For j ∈ J ,
let C(j) be the collection given by

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g6
〉
, g6Ŵ (j)

]}
. (6.8)
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Next, we give an explicit version of a result of [23]

Proposition 1. Let Fq be a finite field with q = 2. Let n = 3, T = (1, 2) and d = 4.

Let g be a generator of F∗
q3 and let J = {1, 2, 4}. For each j ∈ J , the collection

C(j) given in (6.8) is a maximal flag code of type-T in F3
2 and hence an element of

MF2,3((1, 2); 4). Moreover, C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2.

Proof. Recall that Ŵ (j) = ⟨1, gj⟩ = {0, 1, gj, gj + 1},

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g6
〉
, g6Ŵ (j)

]}
.

As g is a generator of F∗
23 , we have ⟨gi1⟩ = {0, gi1} ̸= {0, gi2} = ⟨gi2⟩ for

1 ≤ i1 < i2 ≤ 6. We observe that

gi1Ŵ (j) = {0, gi1 , gi1+j, gi1 + gi1+j} ≠ {0, gi2 , gi2+j, gi2 + gi2+j} = gi2Ŵ (j)

for 1 ≤ i1 < i2 ≤ 6. Indeed, otherwise

Ŵ (j) = gi2−i1Ŵ (j).

Put i = i2 − i1. Note that 1 ≤ i ≤ 6. We have

Ŵ (j) = ⟨1, gj⟩ and

giŴ (j) = ⟨gi, gi+j⟩ .

If giŴ (j) = Ŵ (j), then 1 ∈ giŴ (j) and gi ∈ giŴ (j). These imply

1 = a.gi + b.gi+j,

gj = c.gi + d.gi+j.

for a, b, c, d ∈ F2. Hence, we also have

1 = c.gi−j + d.gi = a.gi + b.gi+j. (6.9)

Put x = gj . Dividing (6.9) by gi, we obtain

cx−1 + d = a+ bx

and hence
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bx2 + (a+ d)x+ c = 0. (6.10)

Using (6.10), we get a contradiction as F2(x) = F23 and the minimal polynomial of

x over F2 has degree 3. Next we observe that

{0, gi} =
〈
gi
〉
⊂ giŴ (j) = {0, gi, gi+j, gi + gi+j}.

These arguments show that C(j) is a maximal flag code of type-T in F23 .

Finally, we show that C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2. Indeed

[⟨1⟩ , ⟨1, gj1⟩] ∈ C(j1) \ C(j2) as [⟨1⟩ , ⟨1, gj2⟩] ∈ C(j2) and

⟨1, gj1⟩ ≠ ⟨1, gj2⟩.

Corollary 1. Let Fq be a finite field with q = 2. Let n = 3, T = (1, 2) and d = 4.

Let g ∈ F23 with g3 + g + 1 = 0. Then the maximal flag codes of type-(1, 2) in F23

obtained by [23] correspond to the subset {F1,F2,F3} of the ones given in (6.7).

Remark 5. Proposition 1 is an explicit presentation of a construction of [23] for

q = 2, n = 3, T = (1, 2) and d = 4. In particular, we show that the number of

maximal flag codes of type-(1, 2) for q = 2, n = 3, T = (1, 2) and d = 4 constructed

from [23] is exactly 3. Hence, we detect 24 maximal flag codes of type-(1, 2) for

q = 2, n = 3, T = (1, 2) and d = 4 in Theorem 5.

Next, we consider the case of q = 3.

Theorem 6. Let Fq be a finite field with q = 3. Let n = 3, T = (1, 2) and d = 4.

LetN =

 3

2


q

= q2+q+1 = 13 be the number of distinct 2-dimensional subspaces

in F3
3. Note that N is also equal to the number of distinct 1-dimensional subspaces

of F3
3. Let V1, . . . , VN be an enumeration of all 1-dimensional subspaces of F3

3 given

34



explicitly as follows:

V1 = ⟨(0, 0, 1)⟩ , V2 = ⟨(0, 1, 0)⟩ , V3 = ⟨(1, 0, 0)⟩ , V4 = ⟨(0, 1, 2)⟩ ,
V5 = ⟨(1, 2, 0)⟩ , V6 = ⟨(2, 1, 2)⟩ , V7 = ⟨(1, 1, 1)⟩ , V8 = ⟨(1, 2, 2)⟩ ,
V9 = ⟨(2, 0, 2)⟩ , V10 = ⟨(0, 1, 1)⟩ , V11 = ⟨(1, 1, 0)⟩ , V12 = ⟨(1, 1, 2)⟩ ,
V13 = ⟨(1, 0, 2)⟩ .

Let W1, . . . ,WN be an enumeration of all 2-dimensional subspaces of F3
3 given

explicitly as follows:

W1 = rs

(
0 1 0

0 0 1

)
, W2 = rs

(
1 0 0

0 1 0

)
, W3 = rs

(
1 0 0

0 1 2

)
, W4 = rs

(
1 0 1

0 1 2

)
,

W5 = rs

(
1 2 0

0 0 2

)
, W6 = rs

(
1 0 1

0 1 0

)
, W7 = rs

(
2 0 0

0 2 2

)
, W8 = rs

(
1 0 2

0 2 0

)
,

W9 = rs

(
2 0 2

0 1 1

)
,W10 = rs

(
1 0 1

0 1 1

)
,W11 = rs

(
1 1 0

0 0 2

)
,W12 = rs

(
1 0 2

0 1 0

)
,

W13 = rs

(
1 0 0

0 0 1

)
.

Here, rs denotes the row space of the corresponding 2× 3 matrix over Fq.

Under the notation of (6.4), (6.5), (6.6), the set MF3,3((1, 2); 4) of maximal flag codes

of type-(1, 2) with d = 4 in F3
3 is exactly the set of 3852 flag codes F1, . . . , F3852 have

been given explicitly detected by an exhaustive search via MAGMA [8], they have

been uploaded to the link: Github
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Some of them we put here in our paper as follows:

F1 = [W1,W2,W3,W4,W5,W6,W7,W8,W9,W10,W11,W12,W13] ,

F2 = [W5,W6,W7,W8,W9,W10,W11,W12,W13,W1,W2,W3,W4] ,

F3 = [W11,W12,W13,W1,W2,W3,W4,W5,W6,W7,W8,W9,W10] ,

F4 = [W13,W1,W2,W3,W4,W5,W6,W7,W8,W9,W10,W11,W12] ,

F5 = [W1,W2,W3,W4,W5,W6,W7,W12,W9,W10,W8,W11,W13] ,

F6 = [W1,W2,W3,W4,W5,W6,W7,W12,W13,W9,W8,W11,W10] ,

F7 = [W1,W2,W3,W4,W5,W6,W7,W12,W8,W10,W11,W9,W13] ,

F8 = [W1,W2,W3,W4,W5,W6,W7,W12,W8,W9,W10,W11,W13] ,

F9 = [W1,W2,W3,W4,W5,W6,W11,W8,W9,W7,W10,W12,W13] ,

F10 = [W1,W2,W3,W4,W5,W6,W11,W8,W13,W7,W10,W9,W12] ,

F11 = [W1,W2,W3,W4,W5,W6,W11,W12,W13,W7,W8,W9,W10] ,

F12 = [W1,W2,W3,W4,W5,W6,W11,W12,W8,W7,W9,W10,W13] ,

F13 = [W1,W2,W3,W4,W5,W6,W11,W7,W9,W10,W8,W12,W13] ,

F14 = [W1,W2,W3,W4,W5,W6,W11,W7,W13,W10,W8,W9,W12] ,

F15 = [W1,W2,W3,W4,W5,W6,W11,W7,W13,W9,W8,W12,W10] ,

F16 = [W1,W2,W3,W4,W5,W6,W11,W7,W8,W9,W10,W12,W13] ,

F17 = [W1,W2,W3,W4,W5,W10,W7,W8,W6,W9,W11,W12,W13] ,

F18 = [W1,W2,W3,W4,W5,W10,W7,W12,W6,W9,W8,W11,W13] ,

F19 = [W1,W2,W3,W4,W5,W10,W11,W12,W6,W7,W8,W9,W13] ,

F20 = [W1,W2,W3,W4,W5,W10,W11,W7,W6,W9,W8,W12,W13] ,

F21 = [W1,W2,W3,W4,W5,W10,W6,W8,W9,W7,W11,W12,W13] ,

F22 = [W1,W2,W3,W4,W5,W10,W6,W8,W13,W7,W11,W9,W12] ,

F23 = [W1,W2,W3,W4,W5,W10,W6,W12,W9,W7,W8,W11,W13] ,

F24 = [W1,W2,W3,W4,W5,W10,W6,W12,W8,W7,W11,W9,W13] ,

F25 = [W1,W2,W3,W4,W5,W10,W6,W7,W13,W9,W8,W11,W12] ,

F26 = [W1,W2,W3,W4,W5,W10,W6,W7,W8,W9,W11,W12,W13] ,

F27 = [W1,W2,W3,W4,W9,W6,W7,W5,W13,W10,W8,W11,W12] ,

F28 = [W1,W2,W3,W4,W9,W6,W7,W5,W8,W10,W11,W12,W13] ,

F29 = [W1,W2,W3,W4,W9,W6,W11,W5,W13,W7,W8,W12,W10] ,

F30 = [W1,W2,W3,W4,W9,W6,W11,W5,W8,W7,W10,W12,W13] .

(6.11)

Proof. There are exactly 13!=6227020800 permutations of (1, . . . , N)=(1, . . . , 13).
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For each permutation π = (i1, . . . , iN) of (1, . . . , 13) we check if (6.5) holds. By

MAGMA, we obtain that the permutations π = (i1, . . . , iN) of (1, . . . , 13) satisfying

(6.5) are exactly the ones corresponding to F1, . . . ,F3852.

Let g be a generator of F∗
33 with g3 + 2g + 1 = 0. Let Ŵ1, Ŵ2, . . . , Ŵ13 be all 2-

dimensional F3-linear subspaces of F33 . There exists 1 ≤ j ≤ 13 such that 1 ∈ Ŵj .

By renumbering, we assume that 1 ∈ Ŵ1. Let

Ŵ (j) =
〈
1, gj

〉
for 1 ≤ j ≤ 12. Note that g13 ∈ F∗

3. Using g3 + 2g + 1 = 0, we obtain that

⟨1, g⟩ = ⟨1, g3⟩ = ⟨1, g9⟩ ,
⟨1, g2⟩ = ⟨1, g8⟩ = ⟨1, g12⟩ ,
⟨1, g4⟩ = ⟨1, g5⟩ = ⟨1, g7⟩ ,
⟨1, g6⟩ = ⟨1, g10⟩ = ⟨1, g11⟩ .

Let J = {1, 2, 4, 6}. Note that for j ∈ J , let C(j) be the collection given by

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g12
〉
, g12Ŵ (j)

]}
. (6.12)

Proposition 2. Let Fq be a finite field with q = 3. Let n = 3, T = (1, 2) and d = 4.

Let g be a generator of F∗
33 and let J = {1, 2, 4, 6}. For each j ∈ J , the collection

C(j) given in (6.12) is a maximal flag code of type-T in F3
3 and hence an element of

MF3,3((1, 2); 4). Moreover, C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2.

Proof. Recall that Ŵ = ⟨1, gj⟩ = {0, 1, 2, gj, 2gj, gj + 1, gj + 2, 2gj + 1, 2gj + 2}
and

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g12
〉
, g12Ŵ (j)

]}
.

As g is a generator of F∗
33 , we have ⟨gi1⟩ = {0, gi1} ̸= {0, gi2} = ⟨gi2⟩ for

1 ≤ i1 < i2 ≤ 12. We observe that gi1Ŵ (j) ̸= {0, gi2 , gi2+j, gi2 + gi2+j} = gi2Ŵ (j)

for 1 ≤ i1 < i2 ≤ 12. Indeed, otherwise

Ŵ (j) = gi2−i1Ŵ (j).
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Put i = i2 − i1. Note that 1 ≤ i ≤ 12. We have

Ŵ (j) = ⟨1, gj⟩ and

giŴ (j) = ⟨gi, gi+j⟩ .

If giŴ (j) = Ŵ (j), then 1 ∈ giŴ (j) and gi ∈ giŴ (j). These imply

1 = a.gi + b.gi+j,

gj = c.gi + d.gi+j.

for a, b, c, d ∈ F3. Hence, we also have

1 = c.gi−j + d.gi = a.gi + b.gi+j. (6.13)

Put x = gj . Dividing (6.13) by gi, we obtain

cx−1 + d = a+ bx

and hence

bx2 + (a+ d)x+ c = 0. (6.14)

Using (6.14), we get a contradiction as F3(x) = F33 and the minimal polynomial of

x over F3 has degree 3.

Next we observe that

{0, gi} =
〈
gi
〉
⊂ giŴ (j)

= {0, gi, 2gi, gi+j, 2gi+j, gi + gi+j, 2gi + gi+j, gi + 2gi+j, 2gi + 2gi+j}.

These arguments show that C(j) is a maximal flag code of type-T in F33 .

Finally, we show that C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2. Indeed

[⟨1⟩ , ⟨1, gj1⟩] ∈ C(j1) \ C(j2) as [⟨1⟩ , ⟨1, gj2⟩] ∈ C(j2) and

⟨1, gj1⟩ ≠ ⟨1, gj2⟩ .
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Corollary 2. Let Fq be a finite field with q = 3. Let n = 3, T = (1, 2) and d = 4.

Let g ∈ F33 with g3 + 2g + 1 = 0. Then the maximal flag codes of type-(1, 2) in

F33 obtained by [23] correspond to the subset {F1,F2,F3,F4} of the ones given in

(6.11).

Remark 6. Combining Theorem 6 and Corollary 2, we observe that we detect 3852

maximal flag codes of type-(1, 2), and d = 4 for q = 3 and n = 3 in Theorem 6.

Next, we consider the case of q = 3.

Theorem 7. Let Fq be a finite field with q = 5. Let n = 3, T = (1, 2) and d = 4. Let

N =

 3

2


q

= q2 + q + 1 = 31 be the number of distinct 2-dimensional subspaces

in F3
5. Note that N is also equal to the number of distinct 1-dimensional subspaces

of F3
5. Let V1, . . . , VN be an enumeration of all 1-dimensional subspaces of F3

5 given

explicitly as follows:

V1 = ⟨(0, 0, 1)⟩ , V2 = ⟨(0, 1, 0)⟩ , V3 = ⟨(0, 1, 1)⟩ , V4 = ⟨(0, 1, 2)⟩ ,
V5 = ⟨(0, 1, 3)⟩ , V6 = ⟨(0, 1, 4)⟩ , V7 = ⟨(1, 0, 0)⟩ , V8 = ⟨(1, 0, 1)⟩ ,
V9 = ⟨(1, 0, 2)⟩ , V10 = ⟨(1, 0, 3)⟩ , V11 = ⟨(1, 0, 4)⟩ , V12 = ⟨(1, 1, 0)⟩ ,
V13 = ⟨(1, 1, 1)⟩ , V14 = ⟨(1, 1, 2)⟩ , V15 = ⟨(1, 1, 3)⟩ , V16 = ⟨(1, 1, 4)⟩ ,
V17 = ⟨(1, 2, 0)⟩ , V18 = ⟨(1, 2, 1)⟩ , V19 = ⟨(1, 2, 2)⟩ , V20 = ⟨(1, 2, 3)⟩ ,
V21 = ⟨(1, 2, 4)⟩ , V22 = ⟨(1, 3, 0)⟩ , V23 = ⟨(1, 3, 1)⟩ , V24 = ⟨(1, 3, 2)⟩ ,
V25 = ⟨(1, 3, 3)⟩ , V26 = ⟨(1, 3, 4)⟩ , V27 = ⟨(1, 4, 0)⟩ , V28 = ⟨(1, 4, 1)⟩ ,
V29 = ⟨(1, 4, 2)⟩ , V30 = ⟨(1, 4, 3)⟩ , V31 = ⟨(1, 4, 4)⟩ .

Let W1, . . . ,WN be an enumeration of all 2-dimensional subspaces of F3
5 given
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explicitly as follows:

W1 = rs

(
0 1 0

0 0 1

)
, W2 = rs

(
1 0 0

0 0 1

)
, W3 = rs

(
1 1 0

0 0 1

)
, W4 = rs

(
1 2 0

0 0 1

)
,

W5 = rs

(
1 3 0

0 0 1

)
, W6 = rs

(
1 4 0

0 0 1

)
, W7 = rs

(
1 0 0

0 1 0

)
, W8 = rs

(
1 0 0

0 1 1

)
,

W9 = rs

(
1 0 0

0 1 2

)
,W10 = rs

(
1 0 0

0 1 3

)
,W11 = rs

(
1 0 0

0 1 4

)
,W12 = rs

(
1 0 1

0 1 0

)
,

W13 = rs

(
1 0 1

0 1 1

)
,W14 = rs

(
1 0 1

0 1 2

)
,W15 = rs

(
1 0 1

0 1 3

)
,W16 = rs

(
1 0 1

0 1 4

)
,

W17 = rs

(
1 0 2

0 1 0

)
,W18 = rs

(
1 0 2

0 1 1

)
,W19 = rs

(
1 0 2

0 1 2

)
,W20 = rs

(
1 0 2

0 1 3

)
,

W21 = rs

(
1 0 2

0 1 4

)
,W22 = rs

(
1 0 3

0 1 0

)
,W23 = rs

(
1 0 3

0 1 1

)
,W24 = rs

(
1 0 3

0 1 2

)
,

W25 = rs

(
1 0 3

0 1 3

)
,W26 = rs

(
1 0 3

0 1 4

)
,W27 = rs

(
1 0 4

0 1 0

)
,W28 = rs

(
1 0 4

0 1 1

)
,

W29 = rs

(
1 0 4

0 1 2

)
,W30 = rs

(
1 0 4

0 1 3

)
,W31 = rs

(
1 0 4

0 1 4

)
.

Here, rs denotes the row space of the corresponding 2× 3 matrix over Fq.

Under the notation of (6.4), (6.5), (6.6), the set MF5,3((1, 2); 4) of maximal flag

codes of type-(1, 2) with d = 4 in F3
5 is exactly the set of 4598378639550 flag codes

F1, . . . , F4598378639550 have been given explicitly detected by an exhaustive search via

MAGMA [8]. This much data is not easy to store. Therefore, for a specific purpose,

one can get as many maximal flag codes of type-(1, 2) with d = 4 in F3
5 from the

output of this construction.

Proof. There are exactly 31! = 8222838654177922817725562880000000 permuta-

tions of (1, . . . , N)=(1, . . . , 13). For each permutation π = (i1, . . . , iN) of (1, . . . , 31)

we check if (6.5) holds. By MAGMA, we obtain that the permutations π = (i1, . . . , iN)

of (1, . . . , 31) satisfying (6.5) are exactly the ones corresponding to

F1, . . . ,F4598378639550.
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Let g be a generator of F∗
53 with g3 + 3g + 2 = 0. Let Ŵ1, Ŵ2, . . . , Ŵ31 be all 2-

dimensional F5-linear subspaces of F53 . There exists 1 ≤ j ≤ 31 such that 1 ∈ Ŵj .

By renumbering, we assume that 1 ∈ Ŵ1. Let

Ŵ (j) =
〈
1, gj

〉
for 1 ≤ j ≤ 30. Note that g31 ∈ F∗

5. Using g3 + 3g + 2 = 0, we obtain that

⟨1, g⟩ = ⟨1, g3⟩ = ⟨1, g10⟩ = ⟨1, g14⟩ = ⟨1, g26⟩ ,
⟨1, g2⟩ = ⟨1, g9⟩ = ⟨1, g13⟩ = ⟨1, g25⟩ = ⟨1, g30⟩ ,
⟨1, g4⟩ = ⟨1, g16⟩ = ⟨1, g21⟩ = ⟨1, g22⟩ = ⟨1, g24⟩ ,
⟨1, g5⟩ = ⟨1, g6⟩ = ⟨1, g8⟩ = ⟨1, g15⟩ = ⟨1, g19⟩ ,
⟨1, g7⟩ = ⟨1, g11⟩ = ⟨1, g23⟩ = ⟨1, g28⟩ = ⟨1, g29⟩ ,
⟨1, g12⟩ = ⟨1, g17⟩ = ⟨1, g18⟩ = ⟨1, g20⟩ = ⟨1, g27⟩ ,

.

Let J = {1, 2, 4, 5, 7, 12}. Note that for j ∈ J , let C(j) be the collection given by

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g30
〉
, g30Ŵ (j)

]}
. (6.15)

Proposition 3. Let Fq be a finite field with 5 = 3. Let n = 3, T = (1, 2) and d = 4.

Let g be a generator of F∗
53 and let J = {1, 2, 4, 5, 7, 12}. For each j ∈ J , the

collection C(j) given in (6.15) is a maximal flag code of type-T in F3
5 and hence an

element of MF5,3((1, 2); 4). Moreover, C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2.

Proof. Recall that Ŵ = ⟨1, gj⟩ = {0, 1, 2, 3, 4, gj, gj+1, gj+2, gj+3, gj+4, 2gj, 2gj+

1, 2gj +2, 2gj +3, 2gj +4, 3gj, 3gj +1, 3gj +2, 3gj +3, 3gj +4, 4gj, 4gj +1, 4gj +

2, 4gj + 3, 4gj + 4, } and

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g30
〉
, g30Ŵ (j)

]}
.

As g is a generator of F∗
53 , we have ⟨gi1⟩ = {0, gi1} ̸= {0, gi2} = ⟨gi2⟩ for

1 ≤ i1 < i2 ≤ 30. We observe that gi1Ŵ (j) ̸= {0, gi2 , gi2+j, gi2 + gi2+j} = gi2Ŵ (j)

for 1 ≤ i1 < i2 ≤ 30. Indeed, otherwise

Ŵ (j) = gi2−i1Ŵ (j).

Put i = i2 − i1. Note that 1 ≤ i ≤ 30. We have

Ŵ (j) = ⟨1, gj⟩ and

giŴ (j) = ⟨gi, gi+j⟩ .
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If giŴ (j) = Ŵ (j), then 1 ∈ giŴ (j) and gi ∈ giŴ (j). These imply

1 = a.gi + b.gi+j,

gj = c.gi + d.gi+j.

for a, b, c, d ∈ F5. Hence, we also have

1 = c.gi−j + d.gi = a.gi + b.gi+j. (6.16)

Put x = gj . Dividing (6.16) by gi, we obtain

cx−1 + d = a+ bx

and hence

bx2 + (a+ d)x+ c = 0. (6.17)

Using (6.17), we get a contradiction as F5(x) = F53 and the minimal polynomial of

x over F5 has degree 3.

Next, we observe that

{0, gi} =
〈
gi
〉
⊂ giŴ (j)

={0, gi, 2gi, 3gi, 4gi, gi+j, 2gi+j, 3gi+j, 4gi+j, gi + gi+j, 2gi + gi+j,

3gi + gi+j, 4gi + gi+j, gi + 2gi+j, 2gi + 2gi+j, 3gi + 2gi+j,

4gi + 2gi+j, gi + 3gi+j, 2gi + 3gi+j, 3gi + 3gi+j, 4gi + 3gi+j,

gi + 4gi+j, 2gi + 4gi+j, 3gi + 4gi+j, 4gi + 4gi+j}.

These arguments show that C(j) is a maximal flag code of type-T in F53 .

Finally, we show that C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2. Indeed

[⟨1⟩ , ⟨1, gj1⟩] ∈ C(j1) \ C(j2) as [⟨1⟩ , ⟨1, gj2⟩] ∈ C(j2) and

⟨1, gj1⟩ ≠ ⟨1, gj2⟩ .

Corollary 3. Let Fq be a finite field with q = 5. Let n = 3, T = (1, 2) and d = 4.

Let g ∈ F53 with g3 + 2g + 1 = 0. Then the maximal flag codes of type-(1, 2) in F53

obtained by [23] correspond to the subset {F1,F2,F3,F4,F5,F6} of the ones given

in **?.
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Remark 7. Combining Theorem 7 and Corollary 3, we observe that we detect

4598378639550 maximal flag codes of type-(1, 2), and d = 4 for q = 5 and n = 3 in

Theorem 7.

Remark 8. The main point of the work by Alonso et al. in [4] is to construct flag

codes via spreads and the number of collections of certain types of flag codes with a

given minimum distance d under a fixed vector space Fn
q can be calculated with the

help of matcihngs and perfect matchings of graph theory.

The results we share in this section coincide with the sequence from the online integer

encyclopedia [29].

24, 3852, 18534400, 4598378639550.

These integers are the numbers of permanents of a projective plane of order n for

q = 2, q = 3, q = 4, q = 5, respectively. It is also the number of perfect matchings

between points and lines in a projective plane. It should be noted that this matching

relies on inclusion so that any point is eligible to match with a line such that the

chosen point is involved by that line.

6.1 Characterization of All Maximal Flag Codes of type-(1, 2) in F4
q with d = 4

for q = 2

Let Fq be a finite field, let n = 4, T = (1, 2) and d = 4. Using the information

provided by [23], we obtain that

AFq ,4((1, 2); 4) = q3 + q2 + q + 1.

Let C be a maximal flag code of type-(1, 2) with d = 4 in F4
q (see Definition 9). There

is an important difference from the case of Section 3. Note that C is not a full flag.

Note that the number N1 of distinct 1-dimensional Fq-linear subspaces and the num-

ber N2 of distinct 2-dimensional Fq-linear subspaces in F4
q are

N1 =

 4

1


q

= q3 + q2 + q + 1 and N2 =

 4

2


q

= (q2 + 1)(q2 + q + 1).

Let [U1 ⊂ U2], [V1 ⊂ V2] ∈ C be two distinct flags. Note that
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dS(U1, V1) + dS(U2, V2) ≥ 4. (6.18)

Assume that U1 = V1. Then (U2 ∩ V2) ⊃ U1 and hence

dS(U1, V1) = 0 and dS(U2, V2) ≤ 2. (6.19)

Combining (6.18) and (6.19), we conclude that U1 ̸= V1. If U1 ̸= V1 and U2 = V2,

then

dS(U1, V1) + dS(U2, V2) = 2 + 0 = 2. (6.20)

Let V1, . . . , VN1 be a fixed enumeration of 1-dimensional distinct subspaces of F4
q .

Let W1, . . . ,WN2 be a fixed enumeration of 2-dimensional distinct subspaces of F4
q .

Using the arguments above, in particular (6.18), (6.19) and (6.20), we obtain that a

maximal flag code C of type-(1, 2) with d = 4 in F4
q is represented uniquely as an

N1-tuple.

C =
[
Wi1 ,Wi2 , . . . ,WiN1

]
(6.21)

where

V1 ⊂ Wi1 , V2 ⊂ Wi2 , . . . , VN1 ⊂ WiN1
(6.22)

and

{i1, i2, . . . , iN1} ⊂ {1, 2, . . . , N2} and i1, i2, . . . , iN1 are mutually distinct. (6.23)

Hence, the problem of finding a maximal flag code of type-(1, 2) with d = 4 in F4
q

is exactly finding a subset I = {i1, i2, . . . , iN1} of size N1 in {1, 2, . . . , N2} as in

(6.20) such that (6.19) holds. We solve this problem completely if q = 2 and using

exhaustive computer search via MAGMA [8] in the following theorem.

Theorem 8. Let Fq be a finite field with q = 2. Let n = 4, T = (1, 2) and d = 4.

Let N1 =

 4

1


q

= q3 + q2 + q + 1 = 15 be the number of distinct 1-dimensional
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subspaces in F4
2. Let V1, . . . , VN1 be an enumeration of all 1-dimensional subspaces

of F4
2 given explicitly as follows:

V1 = ⟨(0, 0, 0, 1)⟩ , V2 = ⟨(0, 0, 1, 0)⟩ , V3 = ⟨(0, 1, 0, 0)⟩ ,
V4 = ⟨(1, 0, 0, 0)⟩ , V5 = ⟨(0, 0, 1, 1)⟩ , V6 = ⟨(0, 1, 1, 0)⟩ ,
V7 = ⟨(1, 1, 0, 0)⟩ , V8 = ⟨(1, 0, 1, 1)⟩ , V9 = ⟨(0, 1, 0, 1)⟩ ,
V10 = ⟨(1, 0, 1, 0)⟩ , V11 = ⟨(0, 1, 1, 1)⟩ , V12 = ⟨(1, 1, 1, 0)⟩ ,
V13 = ⟨(1, 1, 1, 1)⟩ , V14 = ⟨(1, 1, 0, 1)⟩ , V15 = ⟨(1, 0, 0, 1)⟩ .

Note that N2 =

 4

2


q

= (q2 + 1)(q2 + q + 1) = 35 is the number of dis-

tinct 2-dimensional subspaces in F4
2. Let W1, . . . ,WN2 be an enumeration of all
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2-dimensional subspaces of F4
2 given explicitly as follows:

W1 = rs

(
1 0 0 0

0 1 0 0

)
, W2 = rs

(
1 0 0 0

0 1 0 1

)
, W3 = rs

(
1 0 0 0

0 1 1 0

)
,

W4 = rs

(
1 0 0 0

0 1 1 1

)
, W5 = rs

(
1 0 0 1

0 1 0 0

)
, W6 = rs

(
1 0 0 1

0 1 0 1

)
,

W7 = rs

(
1 0 0 1

0 1 1 0

)
, W8 = rs

(
1 0 0 1

0 1 1 1

)
, W9 = rs

(
1 0 1 0

0 1 0 0

)
,

W10 = rs

(
1 0 1 0

0 1 0 1

)
,W11 = rs

(
1 0 1 0

0 1 1 0

)
,W12 = rs

(
1 0 1 0

0 1 1 1

)
,

W13 = rs

(
1 0 1 1

0 1 0 0

)
,W14 = rs

(
1 0 1 1

0 1 0 1

)
,W15 = rs

(
1 0 1 1

0 1 1 0

)
,

W16 = rs

(
1 0 1 1

0 1 1 1

)
,W17 = rs

(
1 0 0 0

0 0 1 0

)
,W18 = rs

(
1 0 0 1

0 0 1 0

)
,

W19 = rs

(
1 1 0 0

0 0 1 0

)
,W20 = rs

(
1 1 0 1

0 0 1 0

)
,W21 = rs

(
1 0 0 0

0 0 1 1

)
,

W22 = rs

(
1 0 0 1

0 0 1 1

)
,W23 = rs

(
1 1 0 0

0 0 1 1

)
,W24 = rs

(
1 1 0 1

0 0 1 1

)
,

W25 = rs

(
1 0 0 0

0 0 0 1

)
,W26 = rs

(
1 0 1 0

0 0 0 1

)
,W27 = rs

(
1 1 0 0

0 0 0 1

)
,

W28 = rs

(
1 1 1 0

0 0 0 1

)
,W29 = rs

(
0 1 0 0

0 0 1 0

)
,W30 = rs

(
0 1 0 0

0 0 1 1

)
,

W31 = rs

(
0 1 0 1

0 0 1 0

)
,W32 = rs

(
0 1 0 1

0 0 1 1

)
,W33 = rs

(
0 1 0 0

0 0 0 1

)
,

W34 = rs

(
0 1 1 0

0 0 0 1

)
,W35 = rs

(
0 0 1 0

0 0 0 1

)
.

Here, rs denotes the row space of the corresponding 2 × 4 matrix over Fq.Under

the notation of (6.4), (6.5), (6.6), the set MF2,4((1, 2); 4) of maximal flag codes of

type-(1, 2) in F4
2 contains exactly 328672649760 elements within the set of flag codes

F1, . . . ,F10 below. Moreover, 522980 of them have been uploaded to the linkGithub
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F1 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W23,W27,W22] ,

F2 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W5,W7] ,

F3 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W5,W8] ,

F4 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W5,W18] ,

F5 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W5,W22] ,

F6 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W12,W5] ,

F7 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W12,W7] ,

F8 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W12,W18] ,

F9 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W12,W22] ,

F10 = [W25,W17,W1,W2,W21,W3,W6,W13,W10,W9,W30,W19,W28,W15,W5] .

(6.24)

Proof. Let V be a 1-dimensional subspaces of F4
2. The number of 2-dimensional

subspaces of F4
2 containing V is exactly the number of 2 by 4 reduced row echeloned

matrices over F2 of rank 2 such that the first row is [1000]. Indeed if V ⊂ W and W

is a 2-dimesional subspace of F4
2, then considering a basis of W of the form {v, w}

with v ∈ V shows this fact. Such reduced row echeloned matrices are1 0 0 0

0 1 x1 x2

 ,
1 0 0 0

0 0 1 x3

 ,
1 0 0 0

0 0 0 1


with x1, x2, x3 ∈ F2. Hence, the number of 2-dimensional subspaces of F4

2 containing

V is 22 + 2 + 1 = 7.

For 1 ≤ i ≤ 15, let J(i) be the subset of {1, 2, . . . , 35} such that Vi ⊂ Wj if and only

if j ∈ J(i). The arguments above imply that |J(i)| = 7 for each 1 ≤ i ≤ 15. Note

that, if 1 ≤ i1 < i2 ≤ 15, then

|J(i1) ∩ J(i2)| = 1. (6.25)

Let

C = [Wi1 ,Wi2 , . . . ,Wi15 ]
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be a maximal flag code of type-(1, 2) with d = 4 in F4
2 represented as in (6.21). The

arguments above imply that i1 ∈ J(1), i2 ∈ J(2), . . . , i15 ∈ J(15). Moreover, using

(6.25), we have two situations. Assume first i1 ∈ J(1) is chosen. The two situations

depend on the following: By (6.25), |J(1) ∩ J(2)| = 1. If {i1} = J(1) ∩ J(2), then

there are 7 choices for i2. Using MAGMA, we search maximal flag codes of type-

(1, 2) with d = 4 in F4
2 satisfying (6.21), (6.22), (6.23). We update the online table

periodically.

Let g be a generator of F∗
24 with g4 + g + 1 = 0. Let Ŵ1, Ŵ2, . . . , Ŵ35 be all 2-

dimensional F2-linear subspaces of F24 . By renumbering, we assume that 1 ∈ Ŵ1.

Let

Ŵ (j) =
〈
1, gj

〉
for 1 ≤ j ≤ 14. Using g4 + g + 1 = 0, we obtain that

⟨1, g⟩ = ⟨1, g4⟩ ,
⟨1, g2⟩ = ⟨1, g8⟩ ,
⟨1, g3⟩ = ⟨1, g14⟩ ,
⟨1, g5⟩ = ⟨1, g10⟩ , ∗(see Remark 9 below)

⟨1, g6⟩ = ⟨1, g13⟩ ,
⟨1, g7⟩ = ⟨1, g9⟩ ,
⟨1, g11⟩ = ⟨1, g12⟩ .

Let J = {1, 2, 3, 6, 7, 11}. Note that for j ∈ J , let C(j) be the collection given by

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g14
〉
, g14Ŵ (j)

]}
. (6.26)

Proposition 4. Let Fq be a finite field with q = 2. Let n = 4, T = (1, 2) and d = 4.

Let g be a generator of F∗
24 and let J = {1, 2, 3, 6, 7, 11}. For each j ∈ J , the

collection C(j) given in (6.26) is a maximal flag code of type-T in F4
2 and hence an

element of MF2,4((1, 2); 4). Moreover, C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2.
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Proof. Recall that Ŵ = ⟨1, gj⟩ = {0, 1, gj, gj + 1},

C(j) =
{[

⟨1⟩ , Ŵ (j)
]
,
[
⟨g⟩ , gŴ (j)

]
, . . . ,

[〈
g14
〉
, g14Ŵ (j)

]}
.

As g is a generator of F∗
24 , we have ⟨gi1⟩ = {0, gi1} ̸= {0, gi2} = ⟨gi2⟩ for 1 ≤ i1 <

i2 ≤ 14. We observe that gi1Ŵ (j) = {0, gi1 , gi1+j, gi1 + gi1+j} ≠ {0, gi2 , gi2+j, gi2 +
gi2+j} = gi2Ŵ (j) for 1 ≤ i1 < i2 ≤ 14. Indeed, otherwise

Ŵ (j) = gi2−i1Ŵ (j).

Put i = i2 − i1. Note that 1 ≤ i ≤ 14. We have

Ŵ (j) = ⟨1, gj⟩ and

giŴ (j) = ⟨gi, gi+j⟩ .

If giŴ (j) = Ŵ (j), then 1 ∈ giŴ (j) and gi ∈ giŴ (j). These imply

1 = a.gi + b.gi+j,

gj = c.gi + d.gi+j.

for a, b, c, d ∈ F2. Hence, we also have

1 = c.gi−j + d.gi = a.gi + b.gi+j. (6.27)

Put x = gj . Dividing (6.27) by gi, we obtain

cx−1 + d = a+ bx

and hence

bx2 + (a+ d)x+ c = 0. (6.28)

Using (6.28), we get a contradiction as F2(x) = F24 and the minimal polynomial of

x over F2 has degree 4. Next we observe that

{0, gi} =
〈
gi
〉
⊂ giŴ (j) = {0, gi, gi+j, gi + gi+j}.

These arguments show that C(j) is a maximal flag code of type-T in F24 .
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Finally, we show that C(j1) ̸= C(j2) if j1, j2 ∈ J and j1 ̸= j2. Indeed

[⟨1⟩ , ⟨1, gj1⟩] ∈ C(j1) \ C(j2) as [⟨1⟩ , ⟨1, gj2⟩] ∈ C(j2) and

⟨1, gj1⟩ ≠ ⟨1, gj2⟩ .

Remark 9. Note that if j = 5, then g5 ∈ F4. Hence, we remove 5 in the list J in

Proposition 4. This is another difference to the Section 6.

Corollary 4. Let Fq be a finite field with q = 2. Let n = 4, T = (1, 2) and d = 4.

Let g ∈ F24 with g4 + g + 1 = 0. Then the maximal flag codes of type-(1, 2) in F24

obtained by [23] correspond to the subset {F1,F2,F3,F4,F5,F6} of the ones given

in (6.24).

Remark 10. Combining Theorem 8 and Corollary 4, we observe that we detect ex-

actly 328672649760 maximal flag codes of type-(1, 2) and d = 4 for q = 2 and n = 4

in Theorem 8.
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CHAPTER 7

CONCLUSION

In this work, we have studied a special form of subspace codes which is helpful to

increase the error-correcting capacity of the network via sending all of the previously

sent ones in the new transfer. This way of using subspace codes was introduced first

by Nebe et al. recently and got a lot of attention from researchers all around the world.

Especially the works of Alonso et al. and Sascha Kurz gave some characterizations

for some special forms. In addition, Sascha Kurz gave some results for the size of a

code under some parametrizations and some upper bounds for others. He stated that

his upper bounds are tight for q = 2. We add a new perspective to the case, we count

the number of distinct maximal flag codes for some parameters and also give upper

and lower bounds for any arbitrary maximal flag codes. We also extend this concept

to sets and investigate the situation among a set and its subsets for various values.

This extension was necessary as working with subsets lets us handle the calculations

more flexibly. In this way, we find out that some of the upper bounds of Sascha

Kurz are not tight for q = 1. This is possible with the help of modeling our flags

on different types of graphs and using some combinatorial works from the literature

mostly belonging to Bregman and Alon. This gives a hint that for higher q values,

there might be some more interesting results.
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